论文标题
热壁MOCVD gan的mg掺杂和自由孔特性
Mg-doping and free-hole properties of hot-wall MOCVD GaN
论文作者
论文摘要
热壁金属有机化学蒸气沉积(MOCVD),以前证明可以使高级氮化物材料质量和高性能设备进行了探索,以用于GAN的MG掺杂。我们已经研究了MG掺杂范围($ 2.45 \ times {10}^{18} 〜cm^{ - 3} $最高$ 1.10 \ times {10}^{20}^{20} 〜cm^{ - 3} $)和表现低下的gan:MG,具有低含量的Impurity Plusiftion Plusimit Plusimit Plusimit Plusimit Plusimit Plusimids Plusnive Plentusive Plentusive plustimive。鉴于GA过饱和的观察,讨论了掺杂剂和杂质水平,这提供了一个统一的概念,以解释生长条件对MG受体融合和补偿的影响。通过扫描透射电子显微镜(STEM),X射线衍射(XRD)和表面形态示出了与扩展缺陷有关的结果,并与通过HALL效应和电容 - 电容 - 电压电压(C-V)测量获得的电性能相关。这允许通过热壁MOCVD建立GAN:MG增长的全面图片,从而根据目标应用提供了优化增长参数的指南。我们表明,与Mg受体相比,在GAN:mg中可以达到较低的H浓度,而无需任何原位或后增长后退火,从而导致生长材料中的P型电导率。最先进的$ p $ - 层具有低抗性和高自由孔密度(分别为0.77 $ω$ .. cm和8.4 \ times {10}^{17}^{17} 〜cm^{ - 3} $),在后增速后,将获得热门Moccvd的高空式启动电动机的活力后,可在生长活后获得生长后,可获得启动的高空设备。
The hot-wall metal-organic chemical vapor deposition (MOCVD), previously shown to enable superior III-nitride material quality and high performance devices, has been explored for Mg doping of GaN. We have investigated the Mg incorporation in a wide doping range ($2.45\times{10}^{18}~cm^{-3}$ up to $1.10\times{10}^{20}~cm^{-3}$) and demonstrate GaN:Mg with low background impurity concentrations under optimized growth conditions. Dopant and impurity levels are discussed in view of Ga supersaturation which provides a unified concept to explain the complexity of growth conditions impact on Mg acceptor incorporation and compensation. The results are analysed in relation to the extended defects, revealed by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), and surface morphology, and in correlation with the electrical properties obtained by Hall effect and capacitance-voltage (C-V) measurements. This allows to establish a comprehensive picture of GaN:Mg growth by hot-wall MOCVD providing guidance for growth parameters optimization depending on the targeted application. We show that substantially lower H concentration as compared to Mg acceptors can be achieved in GaN:Mg without any in-situ or post-growth annealing resulting in p-type conductivity in as-grown material. State-of-the-art $p$-GaN layers with a low-resistivity and a high free-hole density (0.77 $Ω$.cm and $8.4\times{10}^{17}~cm^{-3}$, respectively) are obtained after post-growth annealing demonstrating the viability of hot-wall MOCVD for growth of power electronic device structures.