论文标题
在嘈杂的数据利用机器学习上展开船舶移动建模的AIS传输行为
Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning
论文作者
论文摘要
海洋是令人印象深刻的复杂数据混合的来源,可用于发现尚未发现的关系。这些数据来自海洋及其表面,例如用于跟踪血管轨迹的自动识别系统(AIS)消息。 AIS消息以理想的定期时间间隔通过无线电或卫星传输,但随着时间的流逝而变化不规则。因此,本文旨在通过神经网络对AIS消息传输行为进行建模,以预测即将到来的多个船只中的AIS消息的内容,尤其是尽管消息的时间违规行为作为异常值,但尽管具有同时的方法。我们提出了一组实验,其中包含用于预测任务的多种算法,其长度不同。深度学习模型(例如,神经网络)表明,无论时间不规则如何,都可以充分地保留血管的空间意识。我们展示了如何通过共同努力来改善此类任务的卷积层,进料网络和反复的神经网络。在短,中和大序列的消息中,我们的模型实现了相对百分比差异的36/37/38% - 越少,越好,我们观察到Elman的RNN,51/52/40%的GRU上的92/45/96%,在GRU上,LSTM上的129/98/61%。这些结果支持我们的模型作为驱动器,以改善在时间噪声数据下同时分析多个分歧类型的血管时,可以改善容器路线的预测。
The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.