论文标题
$ c $ - 正常的加权构图运营商$ h^2 $
$C$-normal weighted composition operators on $H^2$
论文作者
论文摘要
如果在$ h $上有共轭$ c $,则有界的线性运算符$ t $,称为$ c $ normal $ c $ normal,以便$ ct^\ ast tc = tt^tt^\ ast $。令$φ$为$ \ mathbb {d} $的线性分数自图。在本文中,我们表征了组成操作员$C_φ$和加权构图操作员$ w_ {ψ,φ} $的必要条件,为$ c $ - normal,以及某些共轭$ c $和函数$ψ$。
A bounded linear operator $T$ on a separable complex Hilbert space $H$ is called $C$-normal if there is a conjugation $C$ on $H$ such that $ CT^\ast TC=TT^\ast$. Let $φ$ be a linear fractional self-map of $\mathbb{D}$. In this paper, we characterize the necessary and sufficient condition for the composition operator $C_φ$ and weighted composition operator $W_{ψ,φ}$ to be $C$-normal with some conjugations $C$ and a function $ψ$.