论文标题
通过晶格密码学上的量子演化复杂性的界限
Bounds on quantum evolution complexity via lattice cryptography
论文作者
论文摘要
我们解决了量子理论中的综合运动和混沌运动之间的差异,这是由相应进化算子的复杂性表现出来的。这里的复杂性在这里被理解为时间依赖性进化算子与统一组中的原点之间的最短距离。 (必须使用适当的“复杂性度量”,以考虑执行“非本地”操作的相对难度,该操作立即起作用。为了绕过这一困难,我们将确切的定义从地球学方面进行交换,以使其具有复杂性的上限,并通过将明确规定的无限曲线集中的距离最小化,而不是在所有可能的曲线上获得。确定该上限结果与先前在整数优化理论中研究的最接近的向量问题(CVP)相等,特别是与基于晶格的密码相关的。因此,有效的近似算法是由现有的数学考虑因素提供的,并且可以在我们对量子演化复杂性上的上限分析中使用它们。所得算法实现的复杂度结合了系统地将值分配给可集成的值,而不是混乱的系统,正如我们通过对高度〜10^4的Hilbert空间的显式数值工作所证明的那样。
We address the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators. Complexity is understood here as the shortest geodesic distance between the time-dependent evolution operator and the origin within the group of unitaries. (An appropriate `complexity metric' must be used that takes into account the relative difficulty of performing `nonlocal' operations that act on many degrees of freedom at once.) While simply formulated and geometrically attractive, this notion of complexity is numerically intractable save for toy models with Hilbert spaces of very low dimensions. To bypass this difficulty, we trade the exact definition in terms of geodesics for an upper bound on complexity, obtained by minimizing the distance over an explicitly prescribed infinite set of curves, rather than over all possible curves. Identifying this upper bound turns out equivalent to the closest vector problem (CVP) previously studied in integer optimization theory, in particular, in relation to lattice-based cryptography. Effective approximate algorithms are hence provided by the existing mathematical considerations, and they can be utilized in our analysis of the upper bounds on quantum evolution complexity. The resulting algorithmically implemented complexity bound systematically assigns lower values to integrable than to chaotic systems, as we demonstrate by explicit numerical work for Hilbert spaces of dimensions up to ~10^4.