论文标题
拉格朗日格拉曼尼亚人,CKP层次结构和超确定关系
Lagrangian Grassmannians, CKP hierarchy and hyperdeterminantal relations
论文作者
论文摘要
这项工作涉及拉格朗日格拉曼尼亚人的几何形状与CKP综合层次结构之间的关系。来自Lagrangian grassmannian的Lagrange地图最大各向同性(Lagrangian)子空间的有限维度符号符号矢量空间$ v \ oplus v^*$用于外部空间$λV$的项目化,从对称元素的子空间在二元化$ v \ leftrightArrow v^*$。就大单元上的仿射坐标矩阵而言,这还原为主要的未成年人图,其图像被$ 2 \ times 2 \ times 2 $ Quartic {\ em hyperderderderminantal}的关系所剪切。为了将其应用于CKP层次结构,拉格朗日格拉曼尼亚框架扩展到无限的维度,$ v \ oplus v^*$被偏两极化的Hilbert Space $ {\ Mathcal H} = {\ Mathcal H} = {\ Mathcal H}识别了Fermionic Fock Space $ {\ Mathcal f} =λ^{\ infty/2} {\ Mathcal H} $的图像,并定义了无限尺寸lagrangian映射。定义降低CKP层次结构的线性约束表示为费米子零条件,并推导了超确定关系的无限类似物。通过评估$τ$功能在奇数流量变量的位置,沿参数中的电源总和在奇数流量变量的空间中,通过评估$τ$函数的评估可以满足这种关系的多参数。
This work concerns the relation between the geometry of Lagrangian Grassmannians and the CKP integrable hierarchy. The Lagrange map from the Lagrangian Grassmannian of maximal isotropic (Lagrangian) subspaces of a finite dimensional symplectic vector space $V\oplus V^*$ into the projectivization of the exterior space $ΛV$ is defined by restricting the Plücker map on the full Grassmannian to the Lagrangian sub-Grassmannian and composing it with projection to the subspace of symmetric elements under dualization $V \leftrightarrow V^*$. In terms of the affine coordinate matrix on the big cell, this reduces to the principal minors map, whose image is cut out by the $2 \times 2 \times 2$ quartic {\em hyperdeterminantal} relations. To apply this to the CKP hierarchy, the Lagrangian Grassmannian framework is extended to infinite dimensions, with $V\oplus V^*$ replaced by a polarized Hilbert space $ {\mathcal H} ={\mathcal H}_+\oplus {\mathcal H}_-$, with symplectic form $ω$. The image of the Plucker map in the fermionic Fock space ${\mathcal F}= Λ^{\infty/2}{\mathcal H}$ is identified and the infinite dimensional Lagrangian map is defined. The linear constraints defining reduction to the CKP hierarchy are expressed as a fermionic null condition and the infinite analogue of the hyperdeterminantal relations is deduced. A multiparametric family of such relations is shown to be satisfied by the evaluation of the $τ$-function at translates of a point in the space of odd flow variables along the cubic lattices generated by power sums in the parameters.