论文标题

描述逻辑EL ++带有交叉闭合的嵌入

Description Logic EL++ Embeddings with Intersectional Closure

论文作者

Peng, Xi, Tang, Zhenwei, Kulmanov, Maxat, Niu, Kexin, Hoehndorf, Robert

论文摘要

许多本体论,特别是在生物医学领域中,基于描述逻辑EL ++。通过分布式表示学习,已经做出了几项努力来解释和利用EL ++的本体论。具体而言,EL ++理论中的概念已被表示为n维嵌入空间内的N球。但是,当使用n球代表概念时,由于两个n球的相交不是n球,因此不满足交叉闭合。在衡量概念与推断概念之间的等价之间的距离时,这会导致挑战。为此,我们开发了EL Box Embedding(Elbe),以使用Axis-Parallel Boxes学习描述逻辑EL ++嵌入。我们从EL ++公理中生成了特殊设计的基于盒子的几何约束,用于模型训练。由于盒子的交点保留为盒子,因此满足了相交的闭合。我们在三个数据集上报告了广泛的实验结果,并提出了一个案例研究,以证明该方法的有效性。

Many ontologies, in particular in the biomedical domain, are based on the Description Logic EL++. Several efforts have been made to interpret and exploit EL++ ontologies by distributed representation learning. Specifically, concepts within EL++ theories have been represented as n-balls within an n-dimensional embedding space. However, the intersectional closure is not satisfied when using n-balls to represent concepts because the intersection of two n-balls is not an n-ball. This leads to challenges when measuring the distance between concepts and inferring equivalence between concepts. To this end, we developed EL Box Embedding (ELBE) to learn Description Logic EL++ embeddings using axis-parallel boxes. We generate specially designed box-based geometric constraints from EL++ axioms for model training. Since the intersection of boxes remains as a box, the intersectional closure is satisfied. We report extensive experimental results on three datasets and present a case study to demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源