论文标题

从具有标签偏移的多个数据集学习语义细分

Learning Semantic Segmentation from Multiple Datasets with Label Shifts

论文作者

Kim, Dongwan, Tsai, Yi-Hsuan, Suh, Yumin, Faraki, Masoud, Garg, Sparsh, Chandraker, Manmohan, Han, Bohyung

论文摘要

随着语义细分的增加,在过去几年中,已经提出了许多数据集。然而,标签仍然很昂贵,因此,希望共同跨数据集的聚合以增强数据量和多样性。但是,标签空间在数据集各不相同,甚至可能相互冲突。本文提出了工资,这是一种有效的方法,可以自动在具有不同标签空间的多个数据集中培训模型,而无需进行任何手动重新标记的工作。具体而言,我们提出了两种损失,这些损失解释了相互冲突和同时发生的标签,以在看不见的域中获得更好的泛化性能。首先,确定了由于标签不匹配的标签空间而导致的训练梯度冲突,并提出了独立的二进制跨透明拷贝损失,以减轻此类标签冲突。其次,为更好的多数据集训练方案提出了一个考虑跨数据集的班级关系的损失函数。对路线娱乐数据集的广泛定量和定性分析表明,蛋白酶对多数据集基线的改进,尤其是在看不见的数据集上,例如,在所有设置上,在Kitti平均上获得了8%以上的增长。

With increasing applications of semantic segmentation, numerous datasets have been proposed in the past few years. Yet labeling remains expensive, thus, it is desirable to jointly train models across aggregations of datasets to enhance data volume and diversity. However, label spaces differ across datasets and may even be in conflict with one another. This paper proposes UniSeg, an effective approach to automatically train models across multiple datasets with differing label spaces, without any manual relabeling efforts. Specifically, we propose two losses that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains. First, a gradient conflict in training due to mismatched label spaces is identified and a class-independent binary cross-entropy loss is proposed to alleviate such label conflicts. Second, a loss function that considers class-relationships across datasets is proposed for a better multi-dataset training scheme. Extensive quantitative and qualitative analyses on road-scene datasets show that UniSeg improves over multi-dataset baselines, especially on unseen datasets, e.g., achieving more than 8% gain in IoU on KITTI averaged over all the settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源