论文标题
在Büttiker探针存在下,准周期晶格系统中的量子传输
Quantum transport in quasi-periodic lattice systems in presence of Büttiker probes
论文作者
论文摘要
准周期晶格系统提供多种运输特性。在这项工作中,我们研究了环境对准周期系统的运输特性的影响,即一维Aubry-André-Harper(AAH)晶格链及其广义版本(GAAH)通过考虑Büttiker探测方法。我们首先考虑电压探针情况并研究线性响应方案中的电导性能。在零温度下,我们观察到位于原始系统内部和外部的所有无通向机制的电导率增强,对于小探针耦合强度$γ$,幂律缩放$γ^4 $。鉴于,对于大探针耦合强度,所有费米能的电导均相同,并且衰减与缩放$ 1/γ^4 $的幂律。即使在有限温度的极限中,这种特殊的缩放也能生存。有趣的是,这种缩放结果与局部Lindblad Master方程方法最近预测的缩放结果不同。对于所有能量范围以及原始模型的所有范围,运输最终都变得扩散,以与探针建立足够强大的耦合。我们进一步扩展了研究并考虑电压 - 温度探针,以根据功绩数来分析链的热电性能。我们还证明了两个最近获得的在热电效率上的边界的有效性,这些效率比开创性的Carnot结合更紧,并以Onsager的运输系数表示相同。
Quasi-periodic lattice systems offer diverse transport properties. In this work, we investigate the environment induced effects on transport properties for quasi-periodic systems, namely the one-dimensional Aubry-André-Harper (AAH) lattice chain and its generalized version (GAAH) by considering the Büttiker probe approach. We first consider voltage probe situation and study the electrical conductance properties in the linear response regime. At zero temperature, we observe enhancement in conductance at all the no-transport regimes, located both inside and outside of the band of the original system, for small probe coupling strength $γ$ with a power-law scaling $γ^4$. Whereas, for large probe coupling strengths, the conductance at all Fermi energies is the same and decays as a power-law with scaling $1/γ^4$. This particular scaling survives even in the finite-temperature limit. Interestingly, this scaling result is different from the one recently predicted following the local Lindblad master equation approach. The transport eventually becomes diffusive for all energy ranges and in all regimes of the original model for a sufficiently strong coupling with the probes. We further extend our study and consider voltage-temperature probes to analyze the thermoelectric performance of the chain in terms of the figure of merit. We also demonstrate the validity of two recently obtained bounds on thermoelectric efficiency that are tighter than the seminal Carnot bound and express the same in terms of the Onsager's transport coefficients.