论文标题
超分辨率显微镜的时空视觉变压器
Spatio-temporal Vision Transformer for Super-resolution Microscopy
论文作者
论文摘要
结构化照明显微镜(SIM)是一种光学超分辨率技术,可实现超出衍射极限的活细胞成像。 SIM数据的重建很容易构成人工制品,当对高度动态样本进行成像时,由于先前的方法依赖于样品是静态的假设,因此会变得有问题。我们提出了一种新的基于变压器的重建方法VSR-SIM,该方法使用了移动的3维窗口多头注意,除了通道注意机制以解决SIM中的视频超分辨率(VSR)问题。发现注意机制可以捕获序列中的运动,而无需通用运动估计技术,例如光流。我们采用一种训练网络的方法,该网络仅使用自然风景的视频和模型进行SIM图像形成。我们证明了由VSR-SIM启用的用例,称为滚动SIM成像,将SIM中的时间分辨率提高了9倍。我们的方法可以应用于任何SIM卡设置,从而实现了具有高时间分辨率的生物医学研究中动态过程的精确记录。
Structured illumination microscopy (SIM) is an optical super-resolution technique that enables live-cell imaging beyond the diffraction limit. Reconstruction of SIM data is prone to artefacts, which becomes problematic when imaging highly dynamic samples because previous methods rely on the assumption that samples are static. We propose a new transformer-based reconstruction method, VSR-SIM, that uses shifted 3-dimensional window multi-head attention in addition to channel attention mechanism to tackle the problem of video super-resolution (VSR) in SIM. The attention mechanisms are found to capture motion in sequences without the need for common motion estimation techniques such as optical flow. We take an approach to training the network that relies solely on simulated data using videos of natural scenery with a model for SIM image formation. We demonstrate a use case enabled by VSR-SIM referred to as rolling SIM imaging, which increases temporal resolution in SIM by a factor of 9. Our method can be applied to any SIM setup enabling precise recordings of dynamic processes in biomedical research with high temporal resolution.