论文标题

流体中主动表面的自组织形状动力学的计算模型

A computational model of self-organized shape dynamics of active surfaces in fluids

论文作者

Wittwer, Lucas D., Aland, Sebastian

论文摘要

在确定生物系统的模式和形状变化方面,在诸如细胞皮质或上皮片等表面上的机械化学过程。要了解这种活跃表面上流体动力和材料流的复杂相互作用需要新颖的数值工具。在这里,我们提出了一种有限元方法,用于与周围流体相互作用的主动变形表面。底层模型将表面和大量的流体动力融合到产生活跃的收缩力的扩散物种的表面流动。该方法通过基于线性稳定性分析的先前结果验证,并在预测的图案上显示了几乎完美的一致性。远离线性状态,我们发现了丰富的非线性行为,例如存在多个固定状态。我们研究表面上收缩环的形成和相应的形状变化。最后,我们在各种表面几何形状上探索机械化学模式形成,发现对局部表面曲率进行强烈适应。开发的方法为分析各种系统提供了基础,这些系统涉及与周围流体相互作用的活动表面上的机械化学模式形成。

Mechanochemical processes on surfaces such as the cellular cortex or epithelial sheets, play a key role in determining patterns and shape changes of biological systems. To understand the complex interplay of hydrodynamics and material flows on such active surfaces requires novel numerical tools. Here, we present a finite-element method for an active deformable surface interacting with the surrounding fluids. The underlying model couples surface and bulk hydrodynamics to surface flow of a diffusible species which generates active contractile forces. The method is validated with previous results based on linear stability analysis and shows almost perfect agreement regarding predicted patterning. Away from the linear regime we find rich non-linear behavior, such as the presence of multiple stationary states. We study the formation of a contractile ring on the surface and the corresponding shape changes. Finally, we explore mechanochemical pattern formation on various surface geometries and find that patterning strongly adapts to local surface curvature. The developed method provides a basis to analyze a variety of systems that involve mechanochemical pattern formation on active surfaces interacting with surrounding fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源