论文标题

从演示中学到的交互式人类的操纵技巧协调

Interactive Human-in-the-loop Coordination of Manipulation Skills Learned from Demonstration

论文作者

Guo, Meng, Buerger, Mathias

论文摘要

从演示中学习(LFD)为程序机器人技能提供了一个快速,直观和高效的框架,这对研究和工业应用都越来越兴趣。大多数复杂的操纵任务是长期的,并且涉及一组技能原则。因此,在各种情况下,拥有一个可靠的协调方案,该方案选择可靠的协调方案,该方案选择正确的技能原始序列和每个技能的正确参数。这项工作不是依靠精确的模拟器,而是为LFD技能提出了一个人类的协调框架,该框架是:从动力学演示中构建参数化技能模型;根据人类指示构建一个几何任务网络(GTN);在执行过程中逐步学习层次控制策略。该框架可以大大减少手动设计工作,同时改善对新场景的适应性。我们在一个7-DOF的机器人操纵器上显示,所提出的方法可以在不到30分钟的时间内教授复杂的工业任务,例如垃圾箱分类和组装。

Learning from demonstration (LfD) provides a fast, intuitive and efficient framework to program robot skills, which has gained growing interest both in research and industrial applications. Most complex manipulation tasks are long-term and involve a set of skill primitives. Thus it is crucial to have a reliable coordination scheme that selects the correct sequence of skill primitive and the correct parameters for each skill, under various scenarios. Instead of relying on a precise simulator, this work proposes a human-in-the-loop coordination framework for LfD skills that: builds parameterized skill models from kinesthetic demonstrations; constructs a geometric task network (GTN) on-the-fly from human instructions; learns a hierarchical control policy incrementally during execution. This framework can reduce significantly the manual design efforts, while improving the adaptability to new scenes. We show on a 7-DoF robotic manipulator that the proposed approach can teach complex industrial tasks such as bin sorting and assembly in less than 30 minutes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源