论文标题

使用改编的非常深的超级分辨率网络从四分之一采样测量中增强图像重建

Enhanced Image Reconstruction From Quarter Sampling Measurements Using An Adapted Very Deep Super Resolution Network

论文作者

Grosche, Simon, Fischer, Kristian, Brand, Fabian, Seiler, Jürgen, Kaup, André

论文摘要

四分之一采样是一种新型的传感器概念,可实现更高分辨率图像而不增加像素的数量。这是通过覆盖低分辨率传感器的每个像素的四分之三来实现的,使每个像素的传感器区域的一个象限对光敏感。通过随机掩盖不同的部分,可以有效地对较高分辨率图像进行非规范采样。与使用低分辨率传感器和随后的更新采样相比,结合了正确设计的面膜和高质量的重建算法,可以实现更高的图像质量。对于后一种情况,可以使用超级分辨率算法来增强图像质量。最近,基于机器学习的算法,例如非常深的超级分辨率网络(VDSR),已证明为此任务成功。在这项工作中,我们将VDSR的概念转移到了四分之一采样的特殊情况下。除了调整网络布局以利用四分之一采样的情况外,我们还引入了一种新颖的数据增强技术,可以通过季度采样来实现。总的来说,使用季度采样传感器,与使用VDSR的低分辨率传感器相比,Urban 100数据集的PSNR图像质量可以增加+0.67 dB。

Quarter sampling is a novel sensor concept that enables the acquisition of higher resolution images without increasing the number of pixels. This is achieved by covering three quarters of each pixel of a low-resolution sensor such that only one quadrant of the sensor area of each pixel is sensitive to light. By randomly masking different parts, effectively a non-regular sampling of a higher resolution image is performed. Combining a properly designed mask and a high-quality reconstruction algorithm, a higher image quality can be achieved than using a low-resolution sensor and subsequent upsampling. For the latter case, the image quality can be enhanced using super resolution algorithms. Recently, algorithms based on machine learning such as the Very Deep Super Resolution network (VDSR) proofed to be successful for this task. In this work, we transfer the concepts of VDSR to the special case of quarter sampling. Besides adapting the network layout to take advantage of the case of quarter sampling, we introduce a novel data augmentation technique enabled by quarter sampling. Altogether, using the quarter sampling sensor, the image quality in terms of PSNR can be increased by +0.67 dB for the Urban 100 dataset compared to using a low-resolution sensor with VDSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源