论文标题

使用集合神经网络在修改的SIRD流行模型中识别参数的逆问题

Inverse problem for parameters identification in a modified SIRD epidemic model using ensemble neural networks

论文作者

Petrica, Marian, Popescu, Ionel

论文摘要

在本文中,我们提出了SIRD模型的参数识别方法,即经典SIR模型的扩展,该方法将死者视为单独的类别。此外,我们的模型还包括一个参数,该参数是实际感染总数与官方统计中记录的感染数量之间的比率。 由于许多因素,例如政府决策,几种循环和关闭学校的变体,典型的假设是,该模型的参数长期保持不变是不现实的。因此,我们的目标是创建一种在短时间内工作的方法。在此范围内,我们依靠数据的前7天进行估计,然后使用确定的参数来做出预测。 为了执行参数的估计,我们提出了神经网络集合的平均值。每个神经网络都是根据用随机参数求解SIRD 7天来构建的数据库构建的。通过这种方式,网络从SIRD模型的解决方案中学习参数。 最后,我们使用合奏从罗马尼亚的Covid19的真实数据中获取参数的估计,然后我们说明了不同时间段内的预测,从1​​0到45天到45天,死亡人数。主要目的是将这种方法应用于罗马尼亚的Covid-19-19进化的分析,但这在匈牙利,捷克共和国和波兰等其他国家也有说明。 结果得到了定理的支持,该定理可以保证我们可以从报告的数据中恢复模型的参数。我们认为,该方法可以用作处理传染病或其他隔间模型的短期预测的一般工具。

In this paper, we propose a parameter identification methodology of the SIRD model, an extension of the classical SIR model, that considers the deceased as a separate category. In addition, our model includes one parameter which is the ratio between the real total number of infected and the number of infected that were documented in the official statistics. Due to many factors, like governmental decisions, several variants circulating, opening and closing of schools, the typical assumption that the parameters of the model stay constant for long periods of time is not realistic. Thus our objective is to create a method which works for short periods of time. In this scope, we approach the estimation relying on the previous 7 days of data and then use the identified parameters to make predictions. To perform the estimation of the parameters we propose the average of an ensemble of neural networks. Each neural network is constructed based on a database built by solving the SIRD for 7 days, with random parameters. In this way, the networks learn the parameters from the solution of the SIRD model. Lastly we use the ensemble to get estimates of the parameters from the real data of Covid19 in Romania and then we illustrate the predictions for different periods of time, from 10 up to 45 days, for the number of deaths. The main goal was to apply this approach on the analysis of COVID-19 evolution in Romania, but this was also exemplified on other countries like Hungary, Czech Republic and Poland with similar results. The results are backed by a theorem which guarantees that we can recover the parameters of the model from the reported data. We believe this methodology can be used as a general tool for dealing with short term predictions of infectious diseases or in other compartmental models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源