论文标题

E-LMC:空间场预测的核心区域的扩展线性模型

E-LMC: Extended Linear Model of Coregionalization for Spatial Field Prediction

论文作者

Wang, Shihong, Zhang, Xueying, Meng, Yichen, Xing, Wei W.

论文摘要

基于部分微分方程的物理模拟通常会生成空间场结果,这些结果可用于计算工程设计和优化系统的特定属性。由于模拟的密集计算负担,替代模型将低维输入映射到空间场通常是基于相对较小的数据集构建的。为了解决预测整个空间场的挑战,流行的核区域化线性线性模型(LMC)可以在高维空间场输出中解散复杂的相关性,并提供准确的预测。但是,如果通过基本函数与潜在过程的线性组合无法很好地近似空间场,则LMC会失败。在本文中,我们通过引入可演化的神经网络来线性化高度复杂和非线性空间场,以使LMC可以轻松地将非线性问题推广到非线性问题的同时,同时保留了脱脂性和可伸缩性,从而介绍了扩展的核心区域化线性模型(E-LMC)。几种现实世界的应用程序表明,E-LMC可以有效利用空间相关性,显示出比原始LMC的最大改善约40%,并且表现优于其他最先进的空间场模型。

Physical simulations based on partial differential equations typically generate spatial fields results, which are utilized to calculate specific properties of a system for engineering design and optimization. Due to the intensive computational burden of the simulations, a surrogate model mapping the low-dimensional inputs to the spatial fields are commonly built based on a relatively small dataset. To resolve the challenge of predicting the whole spatial field, the popular linear model of coregionalization (LMC) can disentangle complicated correlations within the high-dimensional spatial field outputs and deliver accurate predictions. However, LMC fails if the spatial field cannot be well approximated by a linear combination of base functions with latent processes. In this paper, we present the Extended Linear Model of Coregionalization (E-LMC) by introducing an invertible neural network to linearize the highly complex and nonlinear spatial fields so that the LMC can easily generalize to nonlinear problems while preserving the traceability and scalability. Several real-world applications demonstrate that E-LMC can exploit spatial correlations effectively, showing a maximum improvement of about 40% over the original LMC and outperforming the other state-of-the-art spatial field models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源