论文标题

凸和非凸LP球投影问题的统一分析

A unified analysis of convex and non-convex lp-ball projection problems

论文作者

Won, Joong-Ho, Lange, Kenneth, Xu, Jason

论文摘要

将投射到$ \ ell_p $ norm Balls上的任务在统计和机器学习中无处不在,但是可行的算法可用性在很大程度上仅限于$ p = \ weft \ weft \ {0,1,2,\ infty \ infty \ right \ right \} $的特殊情况。在本文中,我们介绍了用于投影到一般$ p> 0 $的$ \ ell_p $球上的小说可扩展方法。对于$ p \ geq1 $,我们通过双牛顿方法解决了单变量的拉格朗日二重奏。然后,我们仔细设计了一种$ p <1 $的二分线方法,在非凸案例中提供了零或小对偶差的理论和经验证据。我们的贡献的成功得到了经验的彻底评估,并应用于大规模的正规化多任务学习和压缩感测。

The task of projecting onto $\ell_p$ norm balls is ubiquitous in statistics and machine learning, yet the availability of actionable algorithms for doing so is largely limited to the special cases of $p = \left\{ 0, 1,2, \infty \right\}$. In this paper, we introduce novel, scalable methods for projecting onto the $\ell_p$ ball for general $p>0$. For $p \geq1 $, we solve the univariate Lagrangian dual via a dual Newton method. We then carefully design a bisection approach for $p<1$, presenting theoretical and empirical evidence of zero or a small duality gap in the non-convex case. The success of our contributions is thoroughly assessed empirically, and applied to large-scale regularized multi-task learning and compressed sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源