论文标题

描述:深知的星座描述符

Descriptellation: Deep Learned Constellation Descriptors

论文作者

Xing, Chunwei, Sun, Xinyu, Cramariuc, Andrei, Gull, Samuel, Chung, Jen Jen, Cadena, Cesar, Siegwart, Roland, Tschopp, Florian

论文摘要

当前的全球本地化描述符通常在巨大的观点或外观变化下挣扎。一种可能的改进是添加有关语义对象的拓扑信息。但是,手工制作的拓扑描述符很难调节,并且对环境噪声,剧烈的透视变化,对象阻塞或错误探讨并不强大。为了解决这个问题,我们通过将语义意义的对象星座建模为图形,并使用深图卷积网络将星座映射到描述符来制定基于学习的方法。我们证明了我们深知的星座描述符(描述)在两个现实世界数据集上的有效性。尽管对随机生成的仿真数据集进行了描述培训,但它在现实世界数据集上显示出良好的概括能力。描述性还优于最先进的和手工制作的星座描述符在全球本地化上,并且对不同类型的噪声非常有力。该代码可在https://github.com/ethz-asl/descriptellation上公开获取。

Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源