论文标题

有限轨道上的高椭圆形曲线的康托尔分区多项式计算有效计算

Efficient computation of Cantor's division polynomials of hyperelliptic curves over finite fields

论文作者

Eid, Elie

论文摘要

令$ p $为奇数。我们提出了一种用于计算高纤维曲线雅各布人之间通过添加微分方程的算法的算法,并对精度丧失进行了彻底的分析。因此,在可能解除了$ p $ -ADIC中的问题之后,我们得出了快速算法来计算有限场上定义的高纤维化曲线的Cantor的分区多项式。

Let $p$ be an odd prime number. We propose an algorithm for computing rational representations of isogenies between Jacobians of hyperelliptic curves via-adic differential equations with a sharp analysis of the loss of precision. Consequently, after having possibly lifted the problem in the $p$-adics, we derive fast algorithms for computing explicitly Cantor's division polynomials of hyperelliptic curves defined over finite fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源