论文标题

量子噪声对量子生成对抗网络训练的影响

Impact of quantum noise on the training of quantum Generative Adversarial Networks

论文作者

Borras, Kerstin, Chang, Su Yeon, Funcke, Lena, Grossi, Michele, Hartung, Tobias, Jansen, Karl, Kruecker, Dirk, Kühn, Stefan, Rehm, Florian, Tüysüz, Cenk, Vallecorsa, Sofia

论文摘要

当前的噪声中间量子量子设备具有各种固有量子噪声的来源。克服噪声的效果是一个主要挑战,已经提出了不同的缓解误差和误差校正技术。在本文中,我们在存在不同类型的量子噪声的情况下对量子生成对抗网络(QGAN)的性能进行了首次研究,重点是高能物理学中的简化用例。特别是,我们探讨了读数和两量门错误对QGAN训练过程的影响。使用IBM的Qiskit框架,通过经典地模拟嘈杂的量子设备,我们检查了可靠培训的错误率阈值。此外,我们研究了在存在不同错误率的情况下,各种超参数对训练过程的重要性,并探讨了减轻读数错误对结果的影响。

Current noisy intermediate-scale quantum devices suffer from various sources of intrinsic quantum noise. Overcoming the effects of noise is a major challenge, for which different error mitigation and error correction techniques have been proposed. In this paper, we conduct a first study of the performance of quantum Generative Adversarial Networks (qGANs) in the presence of different types of quantum noise, focusing on a simplified use case in high-energy physics. In particular, we explore the effects of readout and two-qubit gate errors on the qGAN training process. Simulating a noisy quantum device classically with IBM's Qiskit framework, we examine the threshold of error rates up to which a reliable training is possible. In addition, we investigate the importance of various hyperparameters for the training process in the presence of different error rates, and we explore the impact of readout error mitigation on the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源