论文标题
使用多种几何形状模仿操纵技巧
Imitation of Manipulation Skills Using Multiple Geometries
论文作者
论文摘要
每日操纵任务的特征是与动作和对象形状相关的几何基原始人。这样的几何描述符仅使用笛卡尔坐标系统而言很差。在本文中,我们提出了一种学习方法,以从坐标系词典中提取最佳表示,以编码观察到的运动/行为。这是通过在Riemannian歧管上使用高斯分布的扩展来实现的,该歧管用于通过将多个几何形状作为任务的候选表示来分析一组用户演示。我们根据迭代线性二次调节器(ILQR)提出了复制问题作为一般最佳控制问题,其中使用提取的坐标系中的高斯分布来定义成本函数。我们将方法应用于模拟和7轴Franka Emika机器人中的对象抓握和开箱任务。结果表明,机器人可以通过维护感兴趣的坐标系中任务的不变特征来利用几个几何来执行操纵任务并将其推广到新情况。
Daily manipulation tasks are characterized by geometric primitives related to actions and object shapes. Such geometric descriptors are poorly represented by only using Cartesian coordinate systems. In this paper, we propose a learning approach to extract the optimal representation from a dictionary of coordinate systems to encode an observed movement/behavior. This is achieved by using an extension of Gaussian distributions on Riemannian manifolds, which is used to analyse a set of user demonstrations statistically, by considering multiple geometries as candidate representations of the task. We formulate the reproduction problem as a general optimal control problem based on an iterative linear quadratic regulator (iLQR), where the Gaussian distribution in the extracted coordinate systems are used to define the cost function. We apply our approach to object grasping and box opening tasks in simulation and on a 7-axis Franka Emika robot. The results show that the robot can exploit several geometries to execute the manipulation task and generalize it to new situations, by maintaining the invariant characteristics of the task in the coordinate system(s) of interest.