论文标题

在非IID数据上使用无界陈旧的梯度进行高效且稳定的K-同步联合学习

Towards Efficient and Stable K-Asynchronous Federated Learning with Unbounded Stale Gradients on Non-IID Data

论文作者

Zhou, Zihao, Li, Yanan, Ren, Xuebin, Yang, Shusen

论文摘要

联合学习(FL)是一种新兴的保护隐私范式,它使多个参与者可以协作训练全球模型而无需上传原始数据。考虑到不同参与者的异质计算和通信能力,异步FL可以避免同步FL中的散曲机效应,并适应与庞大参与者的场景。异步FL中的稳定性和非IID数据都会降低模型效用。但是,解决两个问题的解决方案之间存在固有的矛盾。也就是说,缓解陈旧性需要在应对非IID数据时选择更少但一致的梯度,需要更全面的梯度。为了解决困境,本文提出了具有自适应学习率(WKAFL)的两阶段加权$ K $异步FL。通过选择一致的梯度并自适应调整学习率,WKAFL利用了陈旧的梯度并减轻非IID数据的影响,这可以实现训练速度,预测准确性和训练稳定性的多方面增强。我们还在无限的稳定性的假设下,介绍了WKAFL的收敛分析,以了解稳定性和非IID数据的影响。在基准和合成FL数据集上实施的实验表明,与现有算法相比,WKAFL具有更好的总体性能。

Federated learning (FL) is an emerging privacy-preserving paradigm that enables multiple participants collaboratively to train a global model without uploading raw data. Considering heterogeneous computing and communication capabilities of different participants, asynchronous FL can avoid the stragglers effect in synchronous FL and adapts to scenarios with vast participants. Both staleness and non-IID data in asynchronous FL would reduce the model utility. However, there exists an inherent contradiction between the solutions to the two problems. That is, mitigating the staleness requires to select less but consistent gradients while coping with non-IID data demands more comprehensive gradients. To address the dilemma, this paper proposes a two-stage weighted $K$ asynchronous FL with adaptive learning rate (WKAFL). By selecting consistent gradients and adjusting learning rate adaptively, WKAFL utilizes stale gradients and mitigates the impact of non-IID data, which can achieve multifaceted enhancement in training speed, prediction accuracy and training stability. We also present the convergence analysis for WKAFL under the assumption of unbounded staleness to understand the impact of staleness and non-IID data. Experiments implemented on both benchmark and synthetic FL datasets show that WKAFL has better overall performance compared to existing algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源