论文标题

Wavey-net:用于高速电磁模拟和优化的物理学的深度学习

WaveY-Net: Physics-augmented deep learning for high-speed electromagnetic simulation and optimization

论文作者

Chen, Mingkun, Lupoiu, Robert, Mao, Chenkai, Huang, Der-Han, Jiang, Jiaqi, Lalanne, Philippe, Fan, Jonathan A.

论文摘要

结构化介质内电磁场分布的计算对于光子设备的优化和验证至关重要。我们介绍Wavey-NET,这是一种混合数据和物理学增强的卷积神经网络,可以预测具有超快速速度的电磁场分布,并且对于整个介电光子结构的整个类别的电磁场分布。通过训练神经网络仅学习系统的磁性近场分布,并以两种方式使用麦克斯韦方程式的离散形式主义来实现这种准确性:作为损失函数的物理约束,以及从磁场计算电场的手段。作为模型系统,我们为周期性的硅纳米结构阵列构建了一个替代模拟器,并表明高速模拟器可以直接有效地用于Metagratings的局部和全球自由形式优化。我们预计,物理增强的网络将作为许多类别的光子系统的可行麦克斯韦模拟器更换,从而改变它们的设计方式。

The calculation of electromagnetic field distributions within structured media is central to the optimization and validation of photonic devices. We introduce WaveY-Net, a hybrid data- and physics-augmented convolutional neural network that can predict electromagnetic field distributions with ultra fast speeds and high accuracy for entire classes of dielectric photonic structures. This accuracy is achieved by training the neural network to learn only the magnetic near-field distributions of a system and to use a discrete formalism of Maxwell's equations in two ways: as physical constraints in the loss function and as a means to calculate the electric fields from the magnetic fields. As a model system, we construct a surrogate simulator for periodic silicon nanostructure arrays and show that the high speed simulator can be directly and effectively used in the local and global freeform optimization of metagratings. We anticipate that physics-augmented networks will serve as a viable Maxwell simulator replacement for many classes of photonic systems, transforming the way they are designed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源