论文标题
$ l^p $ - 光谱乘数定理,具有尖锐的$ p $ - 特定规律性在海森伯格类型组上
An $L^p$-spectral multiplier theorem with sharp $p$-specific regularity bound on Heisenberg type groups
论文作者
论文摘要
我们证明了$ l^p $ - 光谱乘数定理在尖锐的规律性条件下,在海森伯格类型组上的子拉普拉斯人$ s> d \ left | 1/p-1/2 \ right | $,其中$ d $是基础小组的拓扑维度。我们的方法依赖于限制类型的估计,沿着小组中心沿拉普拉斯式的光谱截断了乘数。
We prove an $L^p$-spectral multiplier theorem for sub-Laplacians on Heisenberg type groups under the sharp regularity condition $s>d\left|1/p-1/2\right|$, where $d$ is the topological dimension of the underlying group. Our approach relies on restriction type estimates where the multiplier is additionally truncated along the spectrum of the Laplacian on the center of the group.