论文标题

DDL-MVS:MVS网络的深度不连续学习

DDL-MVS: Depth Discontinuity Learning for MVS Networks

论文作者

Ibrahimli, Nail, Ledoux, Hugo, Kooij, Julian, Nan, Liangliang

论文摘要

传统的MVS方法具有良好的准确性,但在完整性方面挣扎,而最近开发的基于学习的多视图立体声(MVS)技术提高了完整性,除了损害精度。我们为MVS方法提出了深度不连续学习,这进一步提高了精度,同时保留了重建的完整性。我们的想法是共同估算明确使用边界图的深度和边界图,以进一步改进深度图。我们验证了我们的想法,并证明我们的策略可以很容易地集成到现有的基于学习的MVS管道中,在该管道中,重建取决于高质量的深度图估计。各种数据集的广泛实验表明,与基线相比,我们的方法提高了重建质量。实验还表明,提出的模型和策略具有良好的概括能力。源代码将很快可用。

Traditional MVS methods have good accuracy but struggle with completeness, while recently developed learning-based multi-view stereo (MVS) techniques have improved completeness except accuracy being compromised. We propose depth discontinuity learning for MVS methods, which further improves accuracy while retaining the completeness of the reconstruction. Our idea is to jointly estimate the depth and boundary maps where the boundary maps are explicitly used for further refinement of the depth maps. We validate our idea and demonstrate that our strategies can be easily integrated into the existing learning-based MVS pipeline where the reconstruction depends on high-quality depth map estimation. Extensive experiments on various datasets show that our method improves reconstruction quality compared to baseline. Experiments also demonstrate that the presented model and strategies have good generalization capabilities. The source code will be available soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源