论文标题
质量的数量:培训具有大规模商品视觉数据的AV运动计划者
Quantity over Quality: Training an AV Motion Planner with Large Scale Commodity Vision Data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With the Autonomous Vehicle (AV) industry shifting towards machine-learned approaches for motion planning, the performance of self-driving systems is starting to rely heavily on large quantities of expert driving demonstrations. However, collecting this demonstration data typically involves expensive HD sensor suites (LiDAR + RADAR + cameras), which quickly becomes financially infeasible at the scales required. This motivates the use of commodity sensors like cameras for data collection, which are an order of magnitude cheaper than HD sensor suites, but offer lower fidelity. Leveraging these sensors for training an AV motion planner opens a financially viable path to observe the `long tail' of driving events. As our main contribution we show it is possible to train a high-performance motion planner using commodity vision data which outperforms planners trained on HD-sensor data for a fraction of the cost. To the best of our knowledge, we are the first to demonstrate this using real-world data. We compare the performance of the autonomy system on these two different sensor configurations, and show that we can compensate for the lower sensor fidelity by means of increased quantity: a planner trained on 100h of commodity vision data outperforms the one with 25h of expensive HD data. We also share the engineering challenges we had to tackle to make this work.