论文标题

热力学信息图神经网络

Thermodynamics-informed graph neural networks

论文作者

Hernández, Quercus, Badías, Alberto, Chinesta, Francisco, Cueto, Elías

论文摘要

在本文中,我们提出了一种深入学习方法,以预测耗散动态系统的时间演变。我们建议同时使用几何和热力学电感偏见来提高所得整合方案的准确性和概括。第一个是通过图形神经网络实现的,该网络诱导了非欧盟几何图几何图,并具有置换不变的节点和边缘更新功能。第二个偏见是通过学习问题的通用结构(哈密顿形式主义的扩展)来模拟更通用的非保守动力学的强迫。在流体和固体力学的背景下,在欧拉和拉格朗日描述中提供了几个示例,在所有测试的示例中,相对平均误差少于3%。基于物理信息和几何深度学习的最新作品提供了两项消融研究。

In this paper we present a deep learning method to predict the temporal evolution of dissipative dynamic systems. We propose using both geometric and thermodynamic inductive biases to improve accuracy and generalization of the resulting integration scheme. The first is achieved with Graph Neural Networks, which induces a non-Euclidean geometrical prior with permutation invariant node and edge update functions. The second bias is forced by learning the GENERIC structure of the problem, an extension of the Hamiltonian formalism, to model more general non-conservative dynamics. Several examples are provided in both Eulerian and Lagrangian description in the context of fluid and solid mechanics respectively, achieving relative mean errors of less than 3% in all the tested examples. Two ablation studies are provided based on recent works in both physics-informed and geometric deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源