论文标题

不可压缩的极性活性流体,具有淬火障碍的尺寸$ d> 2 $

Incompressible polar active fluids with quenched disorder in dimensions $d> 2$

论文作者

Chen, Leiming, Lee, Chiu Fan, Maitra, Ananyo, Toner, John

论文摘要

我们提出了一种不可压缩的极性流体的流体动力学理论。该理论表明,这种液体可以克服淬火障碍引起的破坏并连贯地移动,从而在流体动力学极限中具有非零的平均速度。但是,这类活动系统的缩放行为无法通过在2到5之间的空间维度中线性化的流体动力学来描述。尽管如此,我们在这些维度中获得了确切的维度依赖性缩放指数。

We present a hydrodynamic theory of incompressible polar active fluids with quenched disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder and move coherently, in the sense of having a non-zero mean velocity in the hydrodynamic limit. However, the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling exponents in these dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源