论文标题
平面几何形状中相分离域的边界波动动力学
Boundary fluctuation dynamics of a phase-separated domain in planar geometry
论文作者
论文摘要
利用相排序动力学和重新归一化组的理论,我们通过分析得出在平面伊斯林普遍性类别中(及以下)临界温度附近(及以下)相邻域边界的长波长波动的放松时间。对于保守的订单参数,放松时间像$λ^3 $在波长$λ$时生长,并且可以根据微观量表相关的参数表示:晶格间距,少数族裔阶段的批量扩散系数和温度。这些结果由2D ISING模型的数值模拟支持,此外还可以计算非普遍数值的预替代。我们讨论了这些发现在确定与基本蒙特卡洛相关的实时尺度上的应用,从在实验系统或分子动力学模拟上的长波长弛豫时间的测量中移动。
Using theories of phase ordering kinetics and of renormalization group, we derive analytically the relaxation times of the long wave-length fluctuations of a phase-separated domain boundary in the vicinity of (and below) the critical temperature, in the planar Ising universality class. For a conserved order parameter, the relaxation time grows like $Λ^3$ at wave-length $Λ$ and can be expressed in terms of parameters relevant at the microscopic scale: lattice spacing, bulk diffusion coefficient of the minority phase, and temperature. These results are supported by numerical simulations of 2D Ising models, enabling in addition to calculate the non-universal numerical prefactor. We discuss the applications of these findings to the determination of the real time-scale associated with elementary Monte Carlo moves from the measurement of long wave-length relaxation times on experimental systems or Molecular Dynamics simulations.