论文标题

增强的物理受限的深神经网络,用于建模钒氧化还原流量电池

Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery

论文作者

He, QiZhi, Fu, Yucheng, Stinis, Panos, Tartakovsky, Alexandre

论文摘要

数值建模和仿真已成为必不可少的工具,以促进对基本机制的全面理解以及流动电池的成本效益过程优化和控制。在这项研究中,我们提出了一个增强的物理受限的深神经网络(PCDNN)方法[1],以在钒氧化还原流量电池(VRFBS)中提供高敏锐的电压预测。 PCDNN方法的目的是在神经网络中强制实施基于物理的零维(0D)VRFB模型,以确保各种电池操作条件的模型概括。受0D模型的简化限制,PCDNN无法捕获极端SOC区域的急剧变化。为了提高极端范围的电压预测的准确性,我们引入了第二个(增强)DNN,以减轻0D模型本身所带来的预测误差,并调用所得方法增强的PCDNN(EPCDNN)。通过将模型预测与实验数据进行比较,我们证明了EPCDNN方法可以在整个电荷过程中准确捕获电压响应 - 解散周期,包括电压放电曲线的尾部区域。与标准PCDNN相比,EPCDNN的预测准确性得到显着提高。训练的损耗函数EPCDNN设计为通过调节物理受限的DNN和增强的DNN的重量来灵活。这允许EPCDNN框架可以转移到具有可变物理模型保真度的电池系统中。

Numerical modeling and simulation have become indispensable tools for advancing a comprehensive understanding of the underlying mechanisms and cost-effective process optimization and control of flow batteries. In this study, we propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach [1] to provide high-accuracy voltage predictions in the vanadium redox flow batteries (VRFBs). The purpose of the PCDNN approach is to enforce the physics-based zero-dimensional (0D) VRFB model in a neural network to assure model generalization for various battery operation conditions. Limited by the simplifications of the 0D model, the PCDNN cannot capture sharp voltage changes in the extreme SOC regions. To improve the accuracy of voltage prediction at extreme ranges, we introduce a second (enhanced) DNN to mitigate the prediction errors carried from the 0D model itself and call the resulting approach enhanced PCDNN (ePCDNN). By comparing the model prediction with experimental data, we demonstrate that the ePCDNN approach can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve. Compared to the standard PCDNN, the prediction accuracy of the ePCDNN is significantly improved. The loss function for training the ePCDNN is designed to be flexible by adjusting the weights of the physics-constrained DNN and the enhanced DNN. This allows the ePCDNN framework to be transferable to battery systems with variable physical model fidelity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源