论文标题

Chern绝缘子在双曲线晶格中

Chern insulator in a hyperbolic lattice

论文作者

Liu, Zheng-Rong, Hua, Chun-Bo, Peng, Tan, Zhou, Bin

论文摘要

受到电路量子电动力学中双曲线晶格的实验实现的动机以及对拓扑现象的非欧亚人概括的研究兴趣,我们调查了Chern绝缘阶段在多纤维$ \ {8,3 \} $ lattice中,这是从常规的Oct($ 8 $ -GONTINTION $ -GOTTINTION $ 3 $ gottions)中的coortation nork noce norty coortation nork nork nork nork nork nork nork nork nork nork nork norty coorditions nork noce norter的数字。基于通过计算BOTT索引($ b $)和两端电导来计算双曲线晶格对欧几里得飞机(即Poincaré磁盘模型)的共形,我们透露了两个Chern绝缘阶段(与$ b = 1 $ and $ b = -1 $,分别与$ b = -1 $相关的$ $ $}均为$ $ $ $ $ $ $ $ $ $ $ $ $ 3格子。非平衡局部电流分布的数值计算结果进一步证实,量化的电导平台起源于手性边缘状态,两个Chern绝缘体相表现出相反的手性。此外,我们探讨了障碍对双曲线晶格中拓扑阶段的影响。证明Chern绝缘子的手性边缘态在双曲线晶格中对弱疾病具有鲁棒性。更引人入胜的是发现无序诱导的拓扑非平凡相,在双曲线晶格中表现出手性边缘状态,从而实现了拓扑安德森绝缘子的非欧几里得类似物。我们的工作为双曲线几何系统中拓扑非平凡状态的探索提供了途径。

Motivated by the recent experimental realizations of hyperbolic lattices in circuit quantum electrodynamics and the research interest in the non-Euclidean generalization of topological phenomena, we investigate the Chern insulator phases in a hyperbolic $\{8,3\}$ lattice, which is made from regular octagons ($8$-gons) such that the coordination number of each lattice site is $3$. Based on the conformal projection of the hyperbolic lattice into the Euclidean plane, i.e., the Poincaré disk model, by calculating the Bott index ($B$) and the two-terminal conductance, we reveal two Chern insulator phases (with $B=1$ and $B=-1$, respectively) accompanied with quantized conductance plateaus in the hyperbolic $\{8,3\}$ lattice. The numerical calculation results of the nonequilibrium local current distribution further confirm that the quantized conductance plateau originates from the chiral edge states and the two Chern insulator phases exhibit opposite chirality. Moreover, we explore the effect of disorder on topological phases in the hyperbolic lattice. It is demonstrated that the chiral edge states of Chern insulators are robust against weak disorder in the hyperbolic lattice. More fascinating is the discovery of disorder-induced topological non-trivial phases exhibiting chiral edge states in the hyperbolic lattice, realizing a non-Euclidean analog of topological Anderson insulator. Our work provides a route for the exploration of topological non-trivial states in hyperbolic geometric systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源