论文标题

grasparl:通过对抗强化学习动态抓握

GraspARL: Dynamic Grasping via Adversarial Reinforcement Learning

论文作者

Wu, Tianhao, Zhong, Fangwei, Geng, Yiran, Wang, Hongchen, Zhu, Yongjian, Wang, Yizhou, Dong, Hao

论文摘要

抓住移动物体(例如腰带上的商品或活体动物)是机器人技术中的一项重要但具有挑战性的任务。常规方法依靠一组手动定义的对象运动模式进行训练,从而导致对观点轨迹的概括不佳。在这项工作中,我们介绍了一个对抗性的增强学习框架,以进行动态抓握,即Grasparl。具体。我们将动态的抓问题提出为“移动和抓紧”游戏,机器人将在搬运工上捡起对象,而对抗性搬运工是找到逃脱它的途径。因此,两个代理商玩一场最小的游戏,并通过增强学习训练。这样,搬运工可以在训练时自动产生各种移动轨迹。并且用对抗轨迹训练的机器人可以推广到各种运动模式。对模拟器和现实世界情景的经验结果证明了我们方法的有效性和良好的概括。

Grasping moving objects, such as goods on a belt or living animals, is an important but challenging task in robotics. Conventional approaches rely on a set of manually defined object motion patterns for training, resulting in poor generalization to unseen object trajectories. In this work, we introduce an adversarial reinforcement learning framework for dynamic grasping, namely GraspARL. To be specific. we formulate the dynamic grasping problem as a 'move-and-grasp' game, where the robot is to pick up the object on the mover and the adversarial mover is to find a path to escape it. Hence, the two agents play a min-max game and are trained by reinforcement learning. In this way, the mover can auto-generate diverse moving trajectories while training. And the robot trained with the adversarial trajectories can generalize to various motion patterns. Empirical results on the simulator and real-world scenario demonstrate the effectiveness of each and good generalization of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源