论文标题

基于双层 - 西卡米米神经元的设计和突触峰值神经网络

Bilayer-skyrmion-based design of neuron and synapse for spiking neural network

论文作者

Das, Debasis, Cen, Yunuo, Wang, Jianze, Fong, Xuanyao

论文摘要

由于其尺寸小,非挥发性和较低的降低电流密度,因此对于下一代Spintronics的内存和神经形态计算,磁性Skyrmion技术非常有希望。然而,源自Skyrmion Hall效应的Magnus力使Skyrmion沿着弯曲的轨迹移动,这可能导致在电流引起的Skyyrmion运动期间,纳米径中的Skyrmion灭绝。因此,需要设计利用Skyrmionic运动的电路来限制Skyrmion Hall效应的影响。在这项工作中,我们提出了人造神经元的设计,并使用双层装置组成的双层装置的突触,该装置由两个抗磁性交换耦合的铁磁层,通过无效的马格努斯力来实现针对Skyrmion Hall效应的稳健性。使用微磁模拟,我们表明双层装置可以通过修改其单轴各向异性来作为人造神经元,也可以作为突触工作。我们还证明了我们提出的Skyrmionic Synapse具有完美线性和对称重量更新的固有特性,这对于突触操作非常可取。模拟了使用我们提出的突触和神经元实现的尖峰神经网络,并证明可以在MNIST手写数字数据集上执行分类时达到96.23 \%的精度。

Magnetic skyrmion technology is promising for the next-generation spintronics-based memory and neuromorphic computing due to their small size, non-volatility and low depinning current density. However, the Magnus force originating from the skyrmion Hall effect causes the skyrmion to move along a curved trajectory, which may lead to the annihilation of the skyrmion in a nanotrack during current-induced skyrmion motion. Consequently, circuits utilizing skyrmionic motion need to be designed to limit the impact of the skyrmion Hall effect. In this work, we propose a design of an artificial neuron, and a synapse using the bilayer device consisting of two antiferromagnetically exchange coupled ferromagnetic layers, which achieves robustness against the skyrmion Hall effect by nullifying the Magnus force. Using micromagnetic simulations, we show that the bilayer device can work as an artificial neuron and also as a synapse by modifying its uniaxial anisotropy. We also demonstrate that our proposed skyrmionic synapse has an intrinsic property of perfectly linear and symmetric weight update, which is highly desirable for the synapse operation. A spiking neural network implemented using our proposed synapse and neuron was simulated and showed to achieve 96.23\% accuracy in performing classification on the MNIST handwritten digit dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源