论文标题

HV-NET:基于深度的超量近似

HV-Net: Hypervolume Approximation based on DeepSets

论文作者

Shang, Ke, Chen, Weiyu, Liao, Weiduo, Ishibuchi, Hisao

论文摘要

在这封信中,我们提出了HV-NET,这是一种用于进化多目标优化的超量近似方法的新方法。 HV-NET的基本思想是使用DeepSet,即具有置换不变属性的深神经网络,以近似非主导溶液集的超量。 HV-NET的输入是目标空间中的一个非主导的解决方案集,输出是该解决方案集的近似超量值值。通过计算实验将HV-NET的性能与两种常用的Hypervolume近似方法(即基于点的方法和基于线路的方法)进行比较,从而评估了HV-NET的性能。我们的实验结果表明,HV-NET在近似误差和运行时都优于其他两种方法,这表明使用深度学习技术进行超vOLUME近似。

In this letter, we propose HV-Net, a new method for hypervolume approximation in evolutionary multi-objective optimization. The basic idea of HV-Net is to use DeepSets, a deep neural network with permutation invariant property, to approximate the hypervolume of a non-dominated solution set. The input of HV-Net is a non-dominated solution set in the objective space, and the output is an approximated hypervolume value of this solution set. The performance of HV-Net is evaluated through computational experiments by comparing it with two commonly-used hypervolume approximation methods (i.e., point-based method and line-based method). Our experimental results show that HV-Net outperforms the other two methods in terms of both the approximation error and the runtime, which shows the potential of using deep learning technique for hypervolume approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源