论文标题

神经模拟退火

Neural Simulated Annealing

论文作者

Correia, Alvaro H. C., Worrall, Daniel E., Bondesan, Roberto

论文摘要

模拟退火(SA)是一种随机全局优化技术,适用于广泛的离散和连续可变问题。尽管它很简单,但对于给定问题的有效SA优化器的开发仍取决于少数精心挑选的组件。也就是说,邻居提案分布和温度退火时间表。在这项工作中,我们从强化学习的角度看待SA,并将提案分布构架为政策,鉴于固定的计算预算,可以针对更高的解决方案质量进行优化。我们证明,这种具有如此博学的建议分布的神经SA,由小型的epovariant神经网络参数,在许多问题上都超过了SA基准:Rosenbrock的功能,Knapsack问题,垃圾箱包装问题和旅行销售人员问题。我们还表明,神经SA量表非常适合大问题 - 将其概括为比训练中的问题要大得多,同时在解决方案质量和壁挂时间方面,可以实现与流行的现成求解器和其他机器学习方法相当的性能。

Simulated annealing (SA) is a stochastic global optimisation technique applicable to a wide range of discrete and continuous variable problems. Despite its simplicity, the development of an effective SA optimiser for a given problem hinges on a handful of carefully handpicked components; namely, neighbour proposal distribution and temperature annealing schedule. In this work, we view SA from a reinforcement learning perspective and frame the proposal distribution as a policy, which can be optimised for higher solution quality given a fixed computational budget. We demonstrate that this Neural SA with such a learnt proposal distribution, parametrised by small equivariant neural networks, outperforms SA baselines on a number of problems: Rosenbrock's function, the Knapsack problem, the Bin Packing problem, and the Travelling Salesperson problem. We also show that Neural SA scales well to large problems - generalising to significantly larger problems than the ones seen during training - while achieving comparable performance to popular off-the-shelf solvers and other machine learning methods in terms of solution quality and wall-clock time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源