论文标题
选择和培训深度学习模型的碳足迹进行医学图像分析
Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis
论文作者
论文摘要
由于不断增长的计算要求,深度学习(DL)的能源消耗和碳足迹的增加已成为引起人们关注的原因。在这项工作中,我们专注于开发用于医学图像分析(MIA)的DL模型的碳足迹,其中处理了高空间分辨率的体积图像。在这项研究中,我们介绍并比较了从文献来量化DL的碳足迹的四种工具的特征。使用这些工具之一,我们估计了医学图像分割管道的碳足迹。我们选择NNU-NET作为医疗图像分割管道的代理,并在三个常见数据集上进行实验。通过我们的工作,我们希望告知MIA所产生的能源成本的增加。我们讨论了削减环境影响的简单策略,以使模型选择和培训过程更加有效。
The increasing energy consumption and carbon footprint of deep learning (DL) due to growing compute requirements has become a cause of concern. In this work, we focus on the carbon footprint of developing DL models for medical image analysis (MIA), where volumetric images of high spatial resolution are handled. In this study, we present and compare the features of four tools from literature to quantify the carbon footprint of DL. Using one of these tools we estimate the carbon footprint of medical image segmentation pipelines. We choose nnU-net as the proxy for a medical image segmentation pipeline and experiment on three common datasets. With our work we hope to inform on the increasing energy costs incurred by MIA. We discuss simple strategies to cut-down the environmental impact that can make model selection and training processes more efficient.