论文标题

微血管网络的结构特征触发血液振荡

Structural features of microvascular networks trigger blood-flow oscillations

论文作者

Ben-Ami, Yaron, Atkinson, George W., Pitt-Francis, Joe M., Maini, Philip K., Byrne, Helen M.

论文摘要

我们分析了数学模型,以了解血管网络的微结构特征如何影响血液流动动力学,并确定促进自维持振荡开始的特定特征。通过关注一个简​​单的三节点基序,我们预测网络“冗余”,以连接两个主要流动分支的冗余血管的形式,以及分支中的血液动力学抗性的差异,可以促进振荡动力学的出现。我们使用现有的数学描述来进行血液流性和血细胞比例分裂,以构建我们的流程模型。我们结合了数值模拟和稳定性分析,以研究三节点网络的动力学及其与系统多个稳态解决方案的关系。而对于相等的入口压力条件的情况,冗余容器中没有流动的“微不足道”平衡溶液总是存在的,我们发现当存在其他,稳定,稳态的吸引子时,它并不稳定。反过来,这些“非平凡”的稳态解决方案可能会将HOPF分叉成振荡状态。我们使用分支直径比,以及入口血细胞比容率,构建一个两参数稳定图,该图描述了存在这种振荡动力学的模式。我们表明,只有当分支直径足够不同以使冗余血管中的流量足以充当振荡的驱动力时,该网络几何形状中的流动振荡才有可能。这些微观结构特性被发现促进振荡动力学,可用于探索生物微血管网络中流动不稳定性的来源。

We analyse mathematical models in order to understand how microstructural features of vascular networks may affect blood-flow dynamics, and to identify particular characteristics that promote the onset of self-sustained oscillations. By focusing on a simple three-node motif, we predict that network "redundancy", in the form of a redundant vessel connecting two main flow-branches, together with differences in haemodynamic resistance in the branches, can promote the emergence of oscillatory dynamics. We use existing mathematical descriptions for blood rheology and haematocrit splitting at vessel branch-points to construct our flow model; we combine numerical simulations and stability analysis to study the dynamics of the three-node network and its relation to the system's multiple steady-state solutions. While, for the case of equal inlet-pressure conditions, a "trivial" equilibrium solution with no flow in the redundant vessel always exists, we find that it is not stable when other, stable, steady-state attractors exist. In turn, these "nontrivial" steady-state solutions may undergo a Hopf bifurcation into an oscillatory state. We use the branch diameter ratio, together with the inlet haematocrit rate, to construct a two-parameter stability diagram that delineates regimes in which such oscillatory dynamics exist. We show that flow oscillations in this network geometry are only possible when the branch diameters are sufficiently different to allow for a sufficiently large flow in the redundant vessel, which acts as the driving force of the oscillations. These microstructural properties, which were found to promote oscillatory dynamics, could be used to explore sources of flow instability in biological microvascular networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源