论文标题
贝叶斯学习初始化在各种量子电路中幸存下来的贫瘠高原
Surviving The Barren Plateau in Variational Quantum Circuits with Bayesian Learning Initialization
论文作者
论文摘要
变异量子古典混合算法被视为在短期内解决量子计算机上实用问题的有前途策略。虽然这种方法减少了量子机所需的量子数和操作数量,但它在经典的优化器上承受了重负载。尽管经常被低估了,但后者是一项计算艰巨的任务,这是由于贫瘠的高原现象在参数化的量子电路中。随着量子数的数量,缺乏梯度等指导特征使常规优化策略无效。在这里,我们介绍了快速和慢的算法,该算法使用贝叶斯学习来识别参数空间中有希望的区域。这用于初始化快速本地优化器,以有效地找到全局最佳点。我们说明了此方法对钢筋(BAS)量子生成模型的有效性,该模型已在多个量子硬件平台上进行了研究。我们的结果使变异量子算法更接近其在量子化学,组合优化和量子模拟问题中所设想的应用。
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term. While this approach reduces the number of qubits and operations required from the quantum machine, it places a heavy load on a classical optimizer. While often under-appreciated, the latter is a computationally hard task due to the barren plateau phenomenon in parameterized quantum circuits. The absence of guiding features like gradients renders conventional optimization strategies ineffective as the number of qubits increases. Here, we introduce the fast-and-slow algorithm, which uses Bayesian Learning to identify a promising region in parameter space. This is used to initialize a fast local optimizer to find the global optimum point efficiently. We illustrate the effectiveness of this method on the Bars-and-Stripes (BAS) quantum generative model, which has been studied on several quantum hardware platforms. Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, combinatorial optimization, and quantum simulation problems.