论文标题

特定的离子效应会影响基于石墨烯水石墨烯的超级电容器的物理化学反应吗?多尺度QMMD模拟的观点

Do specific ion effects influence the physical chemistry of aqueous graphene-based supercapacitors? Perspectives from multiscale QMMD simulations

论文作者

Elliott, Joshua D., Chiricotto, Mara, Troisi, Alessandro, Carbone, Paola

论文摘要

特定离子效应是否确定水石墨烯和基于石墨的超级电容器的电荷存储特性仍然是一个高度争议的主题。在这项工作中,我们介绍了多尺度量子力学的经典分子动力学研究,对与完全极化的带电石墨烯片接触的单盐和二价盐电解质进行了研究。通过计算电化学双层和量子电容,我们可以观察到阳离子半径和电荷的恒定电极特异性电容。违反直觉,我们确定阳离子吸附机理的开关从内部到外赫尔姆霍尔兹层导致EDL电容的变化可忽略不计,这似乎是由于石墨烯电极的强大电子结构所致。但是,发现直接在电极表面上穿透内helmholtz平面和吸附的离子(例如K+)的能力可以慢慢平行于界面。由于其在水层之间的离子通道中的位置,因此发现外Helmholtz层中的离子在表面具有较高的扩散率。我们的结果表明,表面效应,例如表面极化以及离子在界面处阳离子行为的基础上的离子的部分脱水和局部结构,并对在约束下看到的离子迁移率的趋势增加了重要的新观点。

Whether or not specific ion effects determine the charge storage properties of aqueous graphene and graphite-based supercapacitors remains a highly debated topic. In this work we present a multiscale quantum mechanics classical molecular dynamics investigation of aqueous mono- and divalent salt electrolytes in contact with fully polarizable charged graphene sheets. By computing both the electrochemical double layer and quantum capacitance we observe a constant electrode specific capacitance with cationic radii and charge. Counterintuitively, we determine that a switch in the cation adsorption mechanism from inner to outer Helmholtz layers leads to negligible changes to the EDL capacitance, this appears to be due to the robust electronic structure of the graphene electrodes. However, the ability of ions (such as K+) with a relatively low hydration free energy to penetrate the inner Helmholtz plane and adsorb directly on the electrode surface is found to slow their diffusion parallel to the interface. Ions in the outer Helmholtz layer are found to have higher diffusivity at the surface due to their position in ion channels between water layers. Our results show that surface effects such as the surface polarization and the partial dehydration and local structuring of ions on the surface underpin the behaviour of cations at the interface and add a vital new perspective on trends in ion mobilities seen under confinement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源