论文标题

通过网络计算的流量控制网络的计算有效的最坏情况分析

Computationally Efficient Worst-Case Analysis of Flow-Controlled Networks with Network Calculus

论文作者

Zippo, Raffaele, Stea, Giovanni

论文摘要

从数据中心到系统体系结构(例如,芯片上的虫洞孔网络),具有逐个跳跃控制的网络发生在几种情况下。可以使用网络演算(NC)计算此类网络中最坏的端对端延迟,这是一个代数理论,在笛卡尔平面中,流量和服务保证表示为曲线。 NC使用转换操作,例如最小卷积,以建模流量曲线如何随着网络节点的遍历而变化。 NC允许建模流量控制的系统,因此可以计算端到端的服务曲线,以描述保证的最低服务,以横穿流量控制的节点的流程。但是,尽管这种端到端服务曲线的代数表达非常紧凑,但从算法的角度来看,它的计算通常是棘手的:数据结构往往会迅速生长到不可避免的大尺寸,即使少于三个啤酒花也可以使操作变得棘手。在本文中,我们提出了计算和代数技术来减轻上述问题。我们表明,在这种情况下,无法使用现有技术(例如减少到紧凑型域),并提出了解决方案的武器库,其中包括减轻数据表示空间爆炸的方法以及用于最小卷积操作的计算有效算法。我们表明,我们的解决方案允许对以前不可行的案例研究进行显着加速,可以分析,并且 - 由于它们不依赖任何近似值,但仍然提供了确切的结果。

Networks with hop-by-hop flow control occur in several contexts, from data centers to systems architectures (e.g., wormhole-routing networks on chip). A worst-case end-to-end delay in such networks can be computed using Network Calculus (NC), an algebraic theory where traffic and service guarantees are represented as curves in a Cartesian plane. NC uses transformation operations, e.g., the min-plus convolution, to model how the traffic profile changes with the traversal of network nodes. NC allows one to model flow-controlled systems, hence one can compute the end-to-end service curve describing the minimum service guaranteed to a flow traversing a tandem of flow-controlled nodes. However, while the algebraic expression of such an end-to-end service curve is quite compact, its computation is often intractable from an algorithmic standpoint: data structures tend to grow quickly to unfeasibly large sizes, making operations intractable, even with as few as three hops. In this paper, we propose computational and algebraic techniques to mitigate the above problem. We show that existing techniques (such as reduction to compact domains) cannot be used in this case, and propose an arsenal of solutions, which include methods to mitigate the data representation space explosion as well as computationally efficient algorithms for the min-plus convolution operation. We show that our solutions allow a significant speedup, enable analysis of previously unfeasible case studies, and -- since they do not rely on any approximation -- still provide exact results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源