论文标题

在高度混乱的环境中进行联合推动和掌握政策的自我监督学习

Self-Supervised Learning for Joint Pushing and Grasping Policies in Highly Cluttered Environments

论文作者

Wang, Yongliang, Mokhtar, Kamal, Heemskerk, Cock, Kasaei, Hamidreza

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Robots often face situations where grasping a goal object is desirable but not feasible due to other present objects preventing the grasp action. We present a deep Reinforcement Learning approach to learn grasping and pushing policies for manipulating a goal object in highly cluttered environments to address this problem. In particular, a dual Reinforcement Learning model approach is proposed, which presents high resilience in handling complicated scenes, reaching an average of 98% task completion using primitive objects in a simulation environment. To evaluate the performance of the proposed approach, we performed two extensive sets of experiments in packed objects and a pile of object scenarios with a total of 1000 test runs in simulation. Experimental results showed that the proposed method worked very well in both scenarios and outperformed the recent state-of-the-art approaches. Demo video, trained models, and source code for the results reproducibility purpose are publicly available. https://sites.google.com/view/pushandgrasp/home

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源