论文标题
贝叶斯学习方法来建模预测性控制
Bayesian Learning Approach to Model Predictive Control
论文作者
论文摘要
这项研究提出了针对模型预测控制算法的贝叶斯学习观点。在贝叶斯学习和基于采样的模型预测控制的早期研究中,高级框架已分别开发。一方面,贝叶斯学习规则提供了一个通用框架,能够将各种机器学习算法作为特殊情况。另一方面,动态镜下降模型预测控制框架能够多元化基于样本滚动的控制算法。但是,在随机最佳控制的背景下,这两个框架之间的连接仍未得到充分理解。这项研究将贝叶斯学习规则的观点结合到了模型预测控制设置中,从理解模型预测控制者作为在线学习者的角度来看。在贝叶斯学习方法中,选择后类和自然梯度的近似来决定模型预测控制算法的多元化,以模拟预测性控制。这种替代观点通过简化设计选择的解释来补充动态镜下降框架。
This study presents a Bayesian learning perspective towards model predictive control algorithms. High-level frameworks have been developed separately in the earlier studies on Bayesian learning and sampling-based model predictive control. On one hand, the Bayesian learning rule provides a general framework capable of generating various machine learning algorithms as special instances. On the other hand, the dynamic mirror descent model predictive control framework is capable of diversifying sample-rollout-based control algorithms. However, connections between the two frameworks have still not been fully appreciated in the context of stochastic optimal control. This study combines the Bayesian learning rule point of view into the model predictive control setting by taking inspirations from the view of understanding model predictive controller as an online learner. The selection of posterior class and natural gradient approximation for the variational formulation governs diversification of model predictive control algorithms in the Bayesian learning approach to model predictive control. This alternative viewpoint complements the dynamic mirror descent framework through streamlining the explanation of design choices.