论文标题
最佳FFT加速有限元求解器用于均质化
Optimal FFT-accelerated Finite Element Solver for Homogenization
论文作者
论文摘要
我们提出了一个无基质有限元(FE)均质化方案,该方案比通用FE实施更有效。我们方案的效率遵循预处理良好的重新制定,允许使用共轭梯度或类似的迭代求解器。几何最佳的预处理 - 一个离散的绿色的定期均匀参考问题的功能 - 在傅立叶空间中具有块 - 二元结构,可以使用快速傅立叶变换(FFT)技术来允许其有效的反演。这意味着该方案缩放为$ \ Mathcal {o}(n \ log(n))$,如fft,从计算效率方面使其相当于光谱求解器。但是,与经典的光谱求解器相反,所提出的方案可与局部支撑一起使用Fe形状函数,并且没有傅立叶响起现象。我们展示了该方案实现了几乎独立于空间离散化的迭代次数,并与相对鲜明的对比度温和地缩放。此外,我们讨论了基于位移的方案与最近提出的具有有限元投影的基于应变的均质化技术之间的等效性。
We propose a matrix-free finite element (FE) homogenization scheme that is considerably more efficient than generic FE implementations. The efficiency of our scheme follows from a preconditioned well-scaled reformulation allowing for the use of the conjugate gradient or similar iterative solvers. The geometrically-optimal preconditioner -- a discretized Green's function of a periodic homogeneous reference problem -- has a block-diagonal structure in the Fourier space which permits its efficient inversion using the fast Fourier transform (FFT) techniques for generic regular meshes. This implies that the scheme scales as $\mathcal{O}(n \log(n))$ like FFT, rendering it equivalent to spectral solvers in terms of computational efficiency. However, in contrast to classical spectral solvers, the proposed scheme works with FE shape functions with local supports and is free of the Fourier ringing phenomenon. We showcase that the scheme achieves the number of iterations that are almost independent of spatial discretisation and scales mildly with the phase contrast. Additionally, we discuss the equivalence between our displacement-based scheme and the recently proposed strain-based homogenization technique with finite-element projection.