论文标题
可观察的混乱不存在及其在强大单调动力学系统中的鲁棒性
Nonexistence of observable chaos and its robustness in strongly monotone dynamical systems
论文作者
论文摘要
对于Banach空间上强烈的单调动力系统,我们表明最大的Lyapunov指数$λ_ {\ max}> 0 $在衡量理论意义上害羞的设置。这表明强烈单调动力学系统不承认没有可观察的混乱,其概念是由L.S.提出的。年轻的。我们进一步表明,在系统的$ c^1 $ er扰下,这种不可观察的混乱现象是强大的。
For strongly monotone dynamical systems on a Banach space, we show that the largest Lyapunov exponent $λ_{\max}>0$ holds on a shy set in the measure-theoretic sense. This exhibits that strongly monotone dynamical systems admit no observable chaos, the notion of which was formulated by L.S. Young. We further show that such phenomenon of no observable chaos is robust under the $C^1$-perturbation of the systems.