论文标题

锥顶点代数,模拟theta函数和翁布拉尔月光模块

Cone Vertex Algebras, Mock Theta Functions, and Umbral Moonshine Modules

论文作者

Cheng, Miranda C. N., Sgroi, Gabriele

论文摘要

我们描述了一个不确定的theta函数签名$(1,1)$的家族,该功能可以用晶格中的圆锥体构建的顶点代数的痕量功能表示。所考虑的无限theta函数家族与模拟theta函数和Appell-Lerch总和具有有趣的联系。我们使用这些关系来编写lambency $ \ ell = 8,12,16 $的McKay-Thompson系列的umbral Moonshine系列。

We describe a family of indefinite theta functions of signature $(1,1)$ that can be expressed in terms of trace functions of vertex algebras built from cones in lattices. The family of indefinite theta functions considered has interesting connections with mock theta functions and Appell-Lerch sums. We use these relations to write the McKay-Thompson series of umbral moonshine at lambency $\ell=8,12,16$ in terms of trace functions of vertex algebras modules, and thereby provide the modules for these instances of umbral moonshine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源