论文标题

Hintnet:在异构时空数据上预测交通事故的层次知识转移网络

HintNet: Hierarchical Knowledge Transfer Networks for Traffic Accident Forecasting on Heterogeneous Spatio-Temporal Data

论文作者

An, Bang, Vahedian, Amin, Zhou, Xun, Street, W. Nick, Li, Yanhua

论文摘要

交通事故预测是运输管理和公共安全的重要问题。但是,由于环境的空间异质性以及空间和时间上事故的稀疏性,这个问题是具有挑战性的。交通事故的发生受到空间和时间特征之间复杂依赖性的影响。最近的交通事故预测方法已尝试使用深度学习模型来提高准确性。但是,这些方法中的大多数都集中在小型和同质区域(例如人口城市)上,或者只是使用基于滑动窗口的集合方法,而这些合奏方法不足以在大型地区处理异质性。为了解决这些局限性,本文提出了一个新型的层次知识转移网络(Hintnet)模型,以更好地捕获不规则的异质性模式。 Hintnet对具有不同风险的分离子区域进行多级空间分区,并使用时空和图卷积为每个级别学习一个深层网络模型。通过跨级别的知识转移,Hintnet存档既有较高的精度和更高的训练效率。在爱荷华州的现实世界事故数据集上进行了广泛的实验表明,Hintnet在空间异质和大规模区域上的最新方法优于最先进的方法。

Traffic accident forecasting is a significant problem for transportation management and public safety. However, this problem is challenging due to the spatial heterogeneity of the environment and the sparsity of accidents in space and time. The occurrence of traffic accidents is affected by complex dependencies among spatial and temporal features. Recent traffic accident prediction methods have attempted to use deep learning models to improve accuracy. However, most of these methods either focus on small-scale and homogeneous areas such as populous cities or simply use sliding-window-based ensemble methods, which are inadequate to handle heterogeneity in large regions. To address these limitations, this paper proposes a novel Hierarchical Knowledge Transfer Network (HintNet) model to better capture irregular heterogeneity patterns. HintNet performs a multi-level spatial partitioning to separate sub-regions with different risks and learns a deep network model for each level using spatio-temporal and graph convolutions. Through knowledge transfer across levels, HintNet archives both higher accuracy and higher training efficiency. Extensive experiments on a real-world accident dataset from the state of Iowa demonstrate that HintNet outperforms the state-of-the-art methods on spatially heterogeneous and large-scale areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源