论文标题

预测轴承的降解阶段,用于预测性维护制药行业

Predicting Bearings' Degradation Stages for Predictive Maintenance in the Pharmaceutical Industry

论文作者

Juodelyte, Dovile, Cheplygina, Veronika, Graversen, Therese, Bonnet, Philippe

论文摘要

在制药行业中,监管机构必须审核生产机器的维护。在这种情况下,预测维护的问题不是何时维护机器,而是在给定时间点要维护的部分。焦点从整个机器转移到其组件零件,预测成为一个分类问题。在本文中,我们专注于滚动元件轴承,并提出了一个自动预测其退化阶段的框架。我们的主要贡献是一种基于使用自动编码器嵌入潜在的低维子空间中的高频轴承振动信号的K均值寿命分割方法。给定高频振动数据,我们的框架生成了一个标记的数据集,该数据集用于训练监督模型以进行降解阶段检测。我们的实验结果基于FEMTO轴承数据集,表明我们的框架是可扩展的,并且为一系列不同的轴承提供了可靠和可行的预测。

In the pharmaceutical industry, the maintenance of production machines must be audited by the regulator. In this context, the problem of predictive maintenance is not when to maintain a machine, but what parts to maintain at a given point in time. The focus shifts from the entire machine to its component parts and prediction becomes a classification problem. In this paper, we focus on rolling-elements bearings and we propose a framework for predicting their degradation stages automatically. Our main contribution is a k-means bearing lifetime segmentation method based on high-frequency bearing vibration signal embedded in a latent low-dimensional subspace using an AutoEncoder. Given high-frequency vibration data, our framework generates a labeled dataset that is used to train a supervised model for bearing degradation stage detection. Our experimental results, based on the FEMTO Bearing dataset, show that our framework is scalable and that it provides reliable and actionable predictions for a range of different bearings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源