论文标题
核心爆发超新星残留物的光谱软化在风吹出气泡内部膨胀
Spectral softening in core-collapse supernova remnant expanding inside wind-blown bubble
论文作者
论文摘要
语境。银河宇宙射线被广泛认为是由扩散的冲击加速器引起的,特别是在超新星残留物(SNR)中的冲击中。这些冲击会在复杂的环境中扩展,尤其是在核心崩溃的情况下,随着这些SNR在其祖细胞恒星产生的风泡中的发展。核心折叠SNR的宇宙射线(CRS)可能具有该复杂性的光谱特征。目标。我们研究了祖先的核心折叠SNR的粒子加速度,其初始质量为60 $ m_ \ odot $和逼真的恒星进化。 SNR冲击与风吹气泡内部的不连续性相互作用,并产生了几种传输和反射的冲击。我们分析了它们对粒子光谱的影响以及残留物的产生。方法。 SNR进化的流体动力方程已与测试粒子近似中的宇宙射线的传输方程同时溶解,并与1-D球形对称性中的磁氢动力学(MHD)的诱导方程式求解。结果。复杂风气泡内部核心折叠SNR的演变改变了颗粒及其发射的光谱。我们已经发现,在冲击风内的冲击传播期间,光谱指数接近2.5,并且这种柔软性在后来的进化阶段持续存在。此外,我们计算出的总生产光谱释放到星际培养基中,在传播模型中所需的银河CRS注入光谱在高能量时表现出光谱一致性。磁场结构有效地影响了SNR的发射形态,因为它控制了颗粒的运输和同步加速器的发射率。
Context. Galactic cosmic rays are widely assumed to arise from diffusive shock acceleration, specifically at shocks in supernova remnants (SNRs). These shocks expand in a complex environment, particularly in the core-collapse scenario as these SNRs evolve inside the wind-blown bubbles created by their progenitor stars. The cosmic rays (CRs) at core-collapse SNRs may carry spectral signatures of that complexity. Aims. We study particle acceleration in the core-collapse SNR of a progenitor with initial mass 60 $M_\odot$ and realistic stellar evolution. The SNR shock interacts with discontinuities inside the wind-blown bubble and generates several transmitted and reflected shocks. We analyse their impact on particle spectra and the resulting emission from the remnant. Methods. The hydrodynamic equations for the evolution of SNR inside the pre-supernova circumstellar medium have been solved simultaneously with the transport equation for cosmic rays in test-particle approximation and with the induction equation for the magnetohydrodynamics (MHD) in 1-D spherical symmetry. Results. The evolution of core-collapse SNRs inside complex wind-blown bubbles modifies the spectra of both the particles and their emission. We have found softer particle spectra with spectral indices close to 2.5 during shock propagation inside the shocked wind, and this softness persists at later evolutionary stages. Further, our calculated total production spectrum released into the interstellar medium demonstrates spectral consistency at high energy with the galactic CRs injection spectrum, required in propagation models. The magnetic field structure effectively influences the emission morphology of SNR as it governs the transportation of particles and the synchrotron emissivity.