论文标题
Yang-Baxter方程的set-bialgebras set sealty类型解决方案
Quasi-bialgebras from set-theoretic type solutions of the Yang-Baxter equation
论文作者
论文摘要
我们研究了杨 - 巴克斯特方程的涉及,非脱位的理论解决方案及其Q-Analogues出现的量子代数类别。在对准双旋翼和可允许的Drinfeld曲折提供了一些普遍的结果之后,我们表明,由Set-Beality selotic Solutions及其Q-Analogues产生的量子代数实际上是准三角形的准二极管。与我们的通用发现兼容的具体说明性示例已经解决。在Q形成的设定理论解决方案的情况下,我们还构建了与固定理论相似的可允许的Drinfeld曲折,但受Q-实现的某些额外约束。这些发现极大地将最新的相关结果概括为设置理论解决方案及其Q呈现的类似物。
We examine classes of quantum algebras emerging from involutive, non-degenerate set-theoretic solutions of the Yang-Baxter equation and their q-analogues. After providing some universal results on quasi-bialgebras and admissible Drinfeld twists we show that the quantum algebras produced from set-theoretic solutions and their q-analogues are in fact quasi-triangular quasi-bialgebras. Specific illustrative examples compatible with our generic findings are worked out. In the q-deformed case of set-theoretic solutions we also construct admissible Drinfeld twists similar to the set-theoretic ones, subject to certain extra constraints dictated by the q-deformation. These findings greatly generalise recent relevant results on set theoretic solutions and their q-deformed analogues.