论文标题
零一项法律,几乎肯定的一阶逻辑估值在半语义上
Zero-One Laws and Almost Sure Valuations of First-Order Logic in Semiring Semantics
论文作者
论文摘要
半语义语义通过在某些交换性半导体K中通过值评估逻辑陈述。随机半解释,由K上的概率分布,概括随机结构引起,我们在这里调查了关于随机结构一阶逻辑如何在随机结构上的经典结果的问题,最重要的是Glebskii等人的0-1定律。和Fagin,概括为半语义。对于积极的半度,经典的0-1法律意味着,每个一阶句子均非随机的半段解释几乎肯定地评估为0,或者几乎肯定只有与0不同的值。但是,通过基于适当的扩展属性和更复杂的分析,基于适当的扩展属性和基于公式的代数表示,我们可以得到更强大的结果。 对于许多半r,可以将一阶句子分为k中的所有半级值j的类f(j),使得f(j)中的每个句子在随机的半段解释下几乎肯定地评估了j。此外,对于有限或无限的晶格半段,该分区实际上仅折叠为三类f(0),f(1)和f(e),分别对几乎可以肯定地评估为0、1,并分别评估为最小的非零值e。计算有限晶格半句子上一阶句子的几乎确定估值的问题是PSPACE组件。 分析有些不同的重要半段是自然数的半度。在这里,相对于自然半序列和f(j)的添加和乘法都在增加,对于自然数J,不再涵盖所有fo sentences,但必须通过几乎肯定会评估到无基数值的句子等级来扩展。
Semiring semantics evaluates logical statements by values in some commutative semiring K. Random semiring interpretations, induced by a probability distribution on K, generalise random structures, and we investigate here the question of how classical results on first-order logic on random structures, most importantly the 0-1 laws of Glebskii et al. and Fagin, generalise to semiring semantics. For positive semirings, the classical 0-1 law implies that every first-order sentence is, asymptotically, either almost surely evaluated to 0 by random semiring interpretations, or almost surely takes only values different from 0. However, by means of a more sophisticated analysis, based on appropriate extension properties and on algebraic representations of first-order formulae, we can prove much stronger results. For many semirings K, the first-order sentences can be partitioned into classes F(j) for all semiring values j in K, such that every sentence in F(j) evaluates almost surely to j under random semiring interpretations. Further, for finite or infinite lattice semirings, this partition actually collapses to just three classes F(0), F(1), and F(e), of sentences that, respectively, almost surely evaluate to 0, 1, and to the smallest non-zero value e. The problem of computing the almost sure valuation of a first-order sentence on finite lattice semirings is PSPACE-complete. An important semiring where the analysis is somewhat different is the semiring of natural numbers. Here, both addition and multiplication are increasing with respect to the natural semiring order and the classes F(j), for natural numbers j, no longer cover all FO-sentences, but have to be extended by the class of sentences that almost surely evaluate to unboundedly large values.