论文标题

zippypoint:通过混合精度离散化快速兴趣点检测,描述和匹配

ZippyPoint: Fast Interest Point Detection, Description, and Matching through Mixed Precision Discretization

论文作者

Kanakis, Menelaos, Maurer, Simon, Spallanzani, Matteo, Chhatkuli, Ajad, Van Gool, Luc

论文摘要

图像中几何区域的有效检测和描述是可视化和映射的视觉系统中的先决条件。这样的系统仍然依靠传统的手工制作方法来有效地生成轻质描述符,这是对更强大的神经网络模型的共同限制,该模型带有高度计算和特定的硬件要求。在本文中,我们专注于检测和描述神经网络所需的改编,以便在计算有限的平台(例如机器人,移动设备和增强现实设备)中使用它们。为此,我们调查和调整网络量化技术以加速推理并在计算有限平台上使用。此外,我们在描述符量化中重新审视了共同的实践,并提出了使用二进制描述符归一化层的使用,从而使能够生成具有恒定数量的独特二进制描述符。我们使用二进制描述符的有效量化网络的Zippypoint提高了网络运行时速度,描述符匹配速度和3D模型大小,至少与Full Percision同行相比,至少提高了一个数量级。这些改进的性能较小,按照同型估计,视觉定位和无图视觉重新定位的任务进行评估。代码和型号可在https://github.com/menelaoskanakis/zippypoint上找到。

Efficient detection and description of geometric regions in images is a prerequisite in visual systems for localization and mapping. Such systems still rely on traditional hand-crafted methods for efficient generation of lightweight descriptors, a common limitation of the more powerful neural network models that come with high compute and specific hardware requirements. In this paper, we focus on the adaptations required by detection and description neural networks to enable their use in computationally limited platforms such as robots, mobile, and augmented reality devices. To that end, we investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms. In addition, we revisit common practices in descriptor quantization and propose the use of a binary descriptor normalization layer, enabling the generation of distinctive binary descriptors with a constant number of ones. ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size, by at least an order of magnitude when compared to full-precision counterparts. These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization. Code and models are available at https://github.com/menelaoskanakis/ZippyPoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源