论文标题
透明:大规模透明对象数据集和基准测试
ClearPose: Large-scale Transparent Object Dataset and Benchmark
论文作者
论文摘要
透明的物体在家庭环境中无处不在,并且对视觉传感和感知系统构成了不同的挑战。透明物体的光学特性使常规的3D传感器单独使用对象深度和姿势估计不可靠。这些挑战的突出显示了针对现实世界中透明对象的大规模RGB深度数据集的短缺。在这项工作中,我们为名为ClearPose的大规模现实世界RGB深度透明对象数据集提供了一个用于分割,场景级深度完成和以对象为中心的姿势估计任务的基准数据集。 ClearPose数据集包含超过350K标记的现实世界RGB深度框架和5M实例注释,涵盖了63个家用对象。该数据集包括在各种照明和遮挡条件下在日常生活中常用的对象类别,以及具有挑战性的测试场景,例如不透明或半透明对象的遮挡案例,非平面取向,液体的存在等。我们基于几个最先进的深度完成以及对物体序列的完成和对象姿势估计的深度估计。数据集和基准源代码可在https://github.com/opipari/clearpose上找到。
Transparent objects are ubiquitous in household settings and pose distinct challenges for visual sensing and perception systems. The optical properties of transparent objects leave conventional 3D sensors alone unreliable for object depth and pose estimation. These challenges are highlighted by the shortage of large-scale RGB-Depth datasets focusing on transparent objects in real-world settings. In this work, we contribute a large-scale real-world RGB-Depth transparent object dataset named ClearPose to serve as a benchmark dataset for segmentation, scene-level depth completion and object-centric pose estimation tasks. The ClearPose dataset contains over 350K labeled real-world RGB-Depth frames and 5M instance annotations covering 63 household objects. The dataset includes object categories commonly used in daily life under various lighting and occluding conditions as well as challenging test scenarios such as cases of occlusion by opaque or translucent objects, non-planar orientations, presence of liquids, etc. We benchmark several state-of-the-art depth completion and object pose estimation deep neural networks on ClearPose. The dataset and benchmarking source code is available at https://github.com/opipari/ClearPose.